A Spectrum Sensing Method Based on Empirical Mode Decomposition and K-Means Clustering Algorithm

Author:

Wang Yonghua12ORCID,Zhang Yongwei1,Wan Pin1,Zhang Shunchao1,Yang Jian1

Affiliation:

1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

2. Key Laboratory of Machine Intelligence and Advanced Computing of the Ministry of Education, Guangzhou 510006, China

Abstract

To solve the problems of poor performance of traditional spectrum sensing method under low signal-to-noise ratio, a new spectrum sensing method based on Empirical Mode Decomposition algorithm and K-means clustering algorithm is proposed. Firstly, the Empirical Mode Decomposition algorithm and the wavelet threshold algorithm are used to remove the noise components in the spectrum sensing signal, and K-means clustering algorithm is used to determine whether the primary user exists. The method can remove the redundant components such as noise in the nonstationary or nonlinear sampling signal in the real environment and does not need to know the prior information such as signal, channel, and noise, so it can well handle the complicated sensing signal in real environment. This method can reduce the impact of noise on the spectrum sensing system and thus can improve the sensing performance of the system. In the experimental part, the difference between maximum and minimum eigenvalues and the difference between the maximum eigenvalue and the average energy in the random matrix are selected as signal features. Experiments also show that the proposed method is better than the traditional spectrum sensing methods.

Funder

Central Finance to Support the Development of Local Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3