Construction of a New Biometric-Based Key Derivation Function and Its Application

Author:

Seo Minhye1ORCID,Park Jong Hwan2ORCID,Kim Youngsam3ORCID,Cho Sangrae3,Lee Dong Hoon1ORCID,Hwang Jung Yeon3ORCID

Affiliation:

1. Graduate School of Information Security, Korea University, Seoul, Republic of Korea

2. Department of Computer Science, Sangmyung University, Seoul, Republic of Korea

3. Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea

Abstract

Biometric data is user-identifiable and therefore methods to use biometrics for authentication have been widely researched. Biometric cryptosystems allow for a user to derive a cryptographic key from noisy biometric data and perform a cryptographic task for authentication or encryption. The fuzzy extractor is known as a prominent biometric cryptosystem. However, the fuzzy extractor has a drawback in that a user is required to store user-specific helper data or receive it online from the server with additional trusted channel, to derive a correct key. In this paper, we present a new biometric-based key derivation function (BB-KDF) to address the issues. In our BB-KDF, users are able to derive cryptographic keys solely from their own biometric data: users do not need any other user-specific helper information. We introduce a security model for the BB-KDF. We then construct the BB-KDF and prove its security in our security model. We then propose an authentication protocol based on the BB-KDF. Finally, we give experimental results to analyze the performance of the BB-KDF. We show that our proposed BB-KDF is computationally efficient and can be deployed on many different kinds of devices.

Funder

Institute for Information & Communications Technology Promotion

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3