Study of Thermomechanical Properties of an Al-Zn-Based Composite Reinforced with Dodecaboride Particles

Author:

Colón Quintana José Luis1ORCID,Soto Medina Sujeily2ORCID,Hernández Marivic3,Suárez Oscar Marcelo4ORCID

Affiliation:

1. Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1691, USA

2. Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA

3. Department of Mechanical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, PR 00681-9000, USA

4. Department of Engineering Science and Materials, University of Puerto Rico-Mayagüez, Mayagüez, PR 00681-9000, USA

Abstract

The effect of the addition ofAlB12particles to gravity cast Al-Zn alloys was studied and related to the composite deformation at high temperature. The characterization techniques of choice were thermomechanical analysis (TMA), Brinell hardness (HB), and optical microscopy. After homogenization treatment, Al-5 wt.% Zn and Al-10 wt.% Zn with 0, 2.08, 4.16 wt.% B samples were quenched in ice water and tested using a thermomechanical analyzer at different temperatures. It was found that after TMA treatment, Brinell hardness of the composites increased for higher concentrations of zinc andAlB12particles, as expected. Such increment was not, however, uniform for all samples at higher temperature levels, suggesting a nonequilibrium interaction between reinforcing particles and zinc. This was further corroborated by TMA experiments, which revealed that for samples with Al-10 wt.% Zn, high temperature deformation augmented as moreAlB12particles were present. After high temperature treatment, precipitation of zinc-rich allotriomorphs was observed by the optical microscopy performed on the samples near or on the aluminum grain boundaries, which discarded the potential effect of fine precipitation due to aging.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on primary synthesis and secondary treatment of aluminium matrix composites;Arab Journal of Basic and Applied Sciences;2020-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3