Classification and Segmentation Algorithm in Benign and Malignant Pulmonary Nodules under Different CT Reconstruction

Author:

Lu Zhiqian1ORCID,Long Feixiang1ORCID,He Xiaodong2ORCID

Affiliation:

1. Department of Radiology, The People’s Hospital of Xuancheng City, Anhui 242000, China

2. Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China

Abstract

Background and Objective. Effective segmentation of pulmonary nodules can effectively assist in the diagnosis of benign and malignant pulmonary nodules. We aim to explore the effectiveness of classification and segmentation algorithms in diagnosing benign and malignant pulmonary nodules under different CT reconstructions. Methods. The imaging data of 55 patients with chest CT plain scan in the Xuancheng People’s Hospital were collected retrospectively. The data of each patient included lung window reconstruction, mediastinum reconstruction, and bone window reconstruction. The depth neural network and 3D convolution neural network were used to construct the model and train the classification and segmentation algorithm. The pathological results were the gold standard for benign and malignant pulmonary nodules. The classification and segmentation algorithms under three CT reconstruction algorithms were compared and analyzed by analysis of variance. Results. Under the three CT reconstruction algorithms, the classification accuracy of pulmonary nodule density types was 98.2%, 96.4%, and 94.5%, respectively. The Dice coefficients of all nodule segmentation were 80.32 % ± 5.91 % , 79.83 % ± 6.12 % , and 80.17 % ± 5.89 % , respectively. The diagnostic accuracy between benign and malignant pulmonary nodules under different reconstruction algorithms was 98.2%, 96.4%, and 94.5%, respectively. There was no significant difference in the classification accuracy, Dice coefficients, and diagnostic accuracy of pulmonary nodules under three different reconstruction algorithms (all P > 0.05 ). Conclusion. The depth neural network algorithm combined with 3D convolution neural network has a good efficiency in identifying benign and malignant pulmonary nodules under different CT reconstruction classification and segmentation algorithms.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3