Affiliation:
1. Department of Radiology, The People’s Hospital of Xuancheng City, Anhui 242000, China
2. Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
Abstract
Background and Objective. Effective segmentation of pulmonary nodules can effectively assist in the diagnosis of benign and malignant pulmonary nodules. We aim to explore the effectiveness of classification and segmentation algorithms in diagnosing benign and malignant pulmonary nodules under different CT reconstructions. Methods. The imaging data of 55 patients with chest CT plain scan in the Xuancheng People’s Hospital were collected retrospectively. The data of each patient included lung window reconstruction, mediastinum reconstruction, and bone window reconstruction. The depth neural network and 3D convolution neural network were used to construct the model and train the classification and segmentation algorithm. The pathological results were the gold standard for benign and malignant pulmonary nodules. The classification and segmentation algorithms under three CT reconstruction algorithms were compared and analyzed by analysis of variance. Results. Under the three CT reconstruction algorithms, the classification accuracy of pulmonary nodule density types was 98.2%, 96.4%, and 94.5%, respectively. The Dice coefficients of all nodule segmentation were
,
, and
, respectively. The diagnostic accuracy between benign and malignant pulmonary nodules under different reconstruction algorithms was 98.2%, 96.4%, and 94.5%, respectively. There was no significant difference in the classification accuracy, Dice coefficients, and diagnostic accuracy of pulmonary nodules under three different reconstruction algorithms (all
). Conclusion. The depth neural network algorithm combined with 3D convolution neural network has a good efficiency in identifying benign and malignant pulmonary nodules under different CT reconstruction classification and segmentation algorithms.
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献