miR-92b-3p Exerts Neuroprotective Effects on Ischemia/Reperfusion-Induced Cerebral Injury via Targeting NOX4 in a Rat Model

Author:

Huang Yongpan1ORCID,Tang Jiayu2ORCID,Li Xiaojuan2ORCID,Long Xian1ORCID,Huang Yansong1ORCID,Zhang Xi3ORCID

Affiliation:

1. School of Medicine, Changsha Social Work College, Changsha, Hunan, China

2. Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China

3. Hunan Brain Hospital, Clinical Medical School of Hunan University of Chinese Medicine, Changsha, Hunan, China

Abstract

The necessity to increase the efficiency of organ preservation has pushed researchers to consider the mechanisms to minimize cerebral ischemia/reperfusion (I/R) injury. Hence, we evaluated the role of the miR-92b-3p/NOX4 pathway in cerebral I/R injury. A cerebral I/R injury model was established by blocking the left middle cerebral artery for 2 h and reperfusion for 24 h, and a hypoxia/reoxygenation (H/R) model was established. Thereafter, cerebral I/R increased obvious neurobiological function and brain injury (such as cerebral infarction, apoptosis, and cell morphology changes). In addition, we noted a significant decrease in the expression of miR-92b-3p, as well as increases in apoptosis and oxidative stress and an increase in NOX4. Furthermore, overexpression of miR-92b-3p blocked the inhibitory effect of miR-92b-3p on the expression of NOX4 and the accumulation of oxygen-free radicals. Bioinformatics analysis found that NOX4 may be the target gene regulated by miR-92b-3p. In conclusion, the involvement of the miR-92b-3p/NOX4 pathway ameliorated cerebral I/R injury through the prevention of apoptosis and oxidative stress. The miR-92b-3p/NOX4 pathway could be considered a potential therapeutic target to alleviate cerebral I/R injury.

Funder

Hunan Provincial Health Commission Scientific Research Project

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3