Intelligent Measurement and Analysis of Sewage Treatment Parameters based on Fuzzy Neural Algorithm with ARM9 Core CPU

Author:

Ma Yaqi1ORCID

Affiliation:

1. School of Transportation, Soochow University, Suzhou 333403, China

Abstract

After entering the new century, the state continues to increase the construction of urban sewage treatment projects in response to the deteriorating water pollution situation. How to collect and analyze the sewage parameter variables in the sewage treatment process to ensure the intelligent measurement and accurate operation of the parameters in the treatment application is an urgent problem to be solved. This paper is mainly based on the computer-aided control system built by the ARM9 core embedded chip, and the feasibility and effectiveness of fuzzy neural network algorithms are discussed to improve the intelligent processing of sewage treatment parameters. After analyzing the principle and implementation flow of fuzzy control and neural network, starting from the characteristics of data collected by ARM9 core chip, the hybrid algorithm model is optimized and improved to further improve the convergence speed and accuracy of the algorithm. The simulation experiment proves that the optimized fuzzy neural control algorithm can effectively identify the dissolved oxygen, nitrate nitrogen, and other parameter data in the sewage treatment, and the recognition accuracy is very close to the true precision. Based on biosensors, the ARM9 core chip control system established by a recursive fuzzy neural network can greatly improve the tracking and control ability of parameters such as dissolved oxygen concentration and nitrate nitrogen concentration in microbial degradation. This has a good development prospect in wastewater treatment control applications. The experimental results show that the recursive fuzzy neural network algorithm proposed in this paper can dynamically track and control the nitrate concentration and dissolved oxygen concentration and ensure that the control is within the accuracy range. The accuracy of recognition is very close to the real accuracy.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3