Direct Numerical Simulation of Particle-Laden Swirling Flows on Turbulence Modulation

Author:

Yan Jie1,Gui Nan2,Xie Gongnan3,Gao Jinsen4

Affiliation:

1. China Academy of Space Technology, Beijing 10094, China

2. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China

3. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

4. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

Abstract

The modulation of turbulence by the laden particles in swirling flows is studied via direct numerical simulation. The statistical characteristics of turbulence modulation are investigated in detail under the effects of different mass loadings as well as Stokes numbers. It is found that the characteristics of turbulence modulation for different Stokes numbers are very similar to each other when the mass loading is light. As the mass loading increases, small particles seem to modulate turbulence more rapidly than large particles. The number concentration or the number flow rate of particles plays an important role in modulation of turbulence. It induces the preferential attenuation of turbulence for small particles in the near field region. Moreover, the trends of modulation of the axial/azimuthal fluctuations, the turbulent kinetic energy, and the Reynolds stress tenor as well as its invariants are similar in the near field region. However, when the turbulence is decayed sufficiently in the downstream region, the inverse turbulence modulation may occur especially for the regions with local intensive accumulation of small particles.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3