Affiliation:
1. College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract
An adaptive sliding mode controller based on fuzzy input design is presented, in order to reduce the roll motion of surface vessel fin stabilizers with shock and vibration of waves. The nonlinearities and uncertainties of the system including feedback errors and disturbance induced by waves are analyzed. And the lift-feedback system is proposed, which improves the shortage of conventional fin angle-feedback. Then the fuzzy input-based adaptive sliding mode control is designed for the system. In the controller design, the Lyapunov function is adopted to guarantee the system stability. Finally, experimental results demonstrate the superior performance of the controller designed using fuzzy input, when compared to the PID controller used in practical engineering.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献