Conserved Microsynteny of NPR1 with Genes Encoding a Signal Calmodulin-Binding Protein and a CK1-Class Protein Kinase in Beta vulgaris and Two Other Eudicots

Author:

Kuykendall David1,Shao Jonathan1,Murphy Tammy1

Affiliation:

1. Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Building 004, Room 120, Beltsville, MD 20705, USA

Abstract

NPR1 is a gene of central importance in enabling plants to resist microbial attack. Therefore, knowledge of nearby genes is important for genome analysis and possibly for improving disease resistance. In this study, systematic DNA sequence analysis, gene annotation, and protein BLASTs were performed to determine genes near the NPR1 gene in Beta vulgaris L., Medicago truncatula Gaertn, and Populus trichocarpa Torr. & Gray, and to access predicted function. Microsynteny was discovered for NPR1 with genes CaMP, encoding a chloroplast-targeted signal calmodulin-binding protein, and CK1PK, a CK1-class protein kinase. Conserved microsynteny of NPR1, CaMP, and CK1PK in three diverse species of eudicots suggests maintenance during evolution by positive selection for close proximity. Perhaps close physical linkage contributes to coordinated expression of these particular genes that may control critically important processes including nuclear events and signal transduction.

Funder

Beet Sugar Development Foundation

Publisher

Hindawi Limited

Subject

Plant Science,Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tell me more: roles of NPRs in plant immunity;Trends in Plant Science;2013-07

2. Genes Encoding Callose Synthase and Phytochrome A Are Adjacent to a MAP3Kα-Like Gene in Beta vulgaris US H20;International Journal of Plant Genomics;2011-06-07

3. Beta;Wild Crop Relatives: Genomic and Breeding Resources;2011

4. A Nest of LTR Retrotransposons Adjacent the Disease Resistance-Priming Gene NPR1 in Beta vulgaris L. U.S. Hybrid H20;International Journal of Plant Genomics;2009-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3