Effects of Summer Rainfall on the Soil Thermal Properties and Surface Energy Balances in the Badain Jaran Desert

Author:

Li Jiangang12ORCID,Mamtimin Ali12ORCID,Li Zhaoguo3,Jiang Cailian4,Wang Minzhong12ORCID

Affiliation:

1. Institute of Desert and Meteorology, CMA, Urumqi 830002, China

2. Center of Central Asian Atmospheric Science Research, Urumqi 830002, China

3. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

4. Wujiaqu Meteorology Bureau, Wujiaqu 831300, China

Abstract

Based on observational data collected during the summer of 2009 from the southern Badain Jaran Desert, the surface sensible and latent heat fluxes and shallow soil thermal storage were obtained through corrections and quality control measures. The soil thermal properties and characteristics of the land surface energy budget before and after rainfall episodes were systematically analyzed. Short-term precipitation had a greater influence than systematic precipitation on the soil temperature (ST) and soil volumetric water content (VWC). After rainfall, the VWC rapidly increased, showing a decreasing growth rate trend with depth and time in all layers; the soil temperature change rate (TCR) exhibited the opposite tendency. The surface albedo, which was affected little by the solar elevation angle and short-term precipitation, fluctuated from low to high during short-term rainfall. The soil thermal parameters, including the volumetric heat capacity, thermal conductivity, and diffusivity, all increased after rainfall. The diurnal soil heat flux variations in each layer manifested as quasisinusoids, and the amplitude gradually decreased with depth. The energy balance ratio (EBR) without and with soil heat storage (S) varied differently; after incorporating S, the EBR increased by approximately 5-6% regardless of rainfall but remained lower afterward. Throughout the observation period, the maximum daytime EBR appeared approximately 1-2 days before or after rainfall and gradually declined otherwise. These findings are fundamental for understanding the influences of cloud and precipitation disturbances on radiation budgets and energy distributions and improving the parameterization of surface radiation budgets and energy balances for numerical models of semiarid areas.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3