Parameter Identification and State of Charge Estimation of NMC Cells Based on Improved Ant Lion Optimizer

Author:

Zhang Kai1ORCID,Ma Jian1ORCID,Zhao Xuan1ORCID,Liu Xiaodong1ORCID,Zhang Yixi1ORCID

Affiliation:

1. School of Automobile, Chang'an University, Xi’an, China

Abstract

For lithium battery, which is widely utilized as energy storage system in electric vehicles (EVs), accurate estimating of the battery parameters and state of charge (SOC) has a significant effect on the prediction of energy power, the estimation of remaining mileage, and the extension of usage life. This paper develops an improved ant lion optimizer (IALO) which introduces the chaotic mapping theory into the initialization and random walk processes to improve the population homogeneity and ergodicity. After the elite (best) individual is obtained, the individual mutant operator is conducted on the elite individual to further exploit the area around elite and avoid local optimum. Then the battery model parameters are optimized by IALO algorithm. As for the SOC estimation, unscented Kalman filter (UKF) is a common algorithm for SOC estimation. However, a disadvantage of UKF is that the noise information is always unknown, and it is usually tuned manually by “trial-and-error” method which is irregular and time-consuming. In this paper, noise information is optimized by IALO algorithm. The singular value decomposition (SVD) which is utilized in the process of unscented transformation to solve the problem of the covariance matrix may lose positive definiteness. The experiment results verify that the developed IALO algorithm has superior performance of battery model parameters estimation. After the noise information is optimized by IALO, the UKF can estimate the SOC accurately and the maximum errors rate is less than 1%.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3