Feature Selection for Very Short-Term Heavy Rainfall Prediction Using Evolutionary Computation

Author:

Seo Jae-Hyun1,Lee Yong Hee2,Kim Yong-Hyuk1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 139-701, Republic of Korea

2. Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration, 45 Gisangcheong-gil, Dongjak-gu, Seoul 156-720, Republic of Korea

Abstract

We developed a method to predict heavy rainfall in South Korea with a lead time of one to six hours. We modified the AWS data for the recent four years to perform efficient prediction, through normalizing them to numeric values between 0 and 1 and undersampling them by adjusting the sampling sizes of no-heavy-rain to be equal to the size of heavy-rain. Evolutionary algorithms were used to select important features. Discriminant functions, such as support vector machine (SVM),k-nearest neighbors algorithm (k-NN), and variantk-NN (k-VNN), were adopted in discriminant analysis. We divided our modified AWS data into three parts: the training set, ranging from 2007 to 2008, the validation set, 2009, and the test set, 2010. The validation set was used to select an important subset from input features. The main features selected wereprecipitation sensingandaccumulated precipitation for 24 hours. In comparative SVM tests using evolutionary algorithms, the results showed that genetic algorithm was considerably superior to differential evolution. The equitable treatment score of SVM with polynomial kernel was the highest among our experiments on average.k-VNN outperformedk-NN, but it was dominated by SVM with polynomial kernel.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3