Eliciting Fairness in N-Player Network Games through Degree-Based Role Assignment

Author:

Teixeira Andreia Sofia1234ORCID,Santos Francisco C.24ORCID,Francisco Alexandre P.2ORCID,Santos Fernando P.456ORCID

Affiliation:

1. Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

2. INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

3. Indiana Network Science Institute, Indiana University, Bloomington, IN, USA

4. ATP-Group, IST-Taguspark, Porto Salvo, Portugal

5. Informatics Institute, University of Amsterdam, Amsterdam, Netherlands

6. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA

Abstract

From social contracts to climate agreements, individuals engage in groups that must collectively reach decisions with varying levels of equality and fairness. These dilemmas also pervade distributed artificial intelligence, in domains such as automated negotiation, conflict resolution, or resource allocation, which aim to engineer self-organized group behaviors. As evidenced by the well-known Ultimatum Game, where a Proposer has to divide a resource with a Responder, payoff-maximizing outcomes are frequently at odds with fairness. Eliciting equality in populations of self-regarding agents requires judicious interventions. Here, we use knowledge about agents’ social networks to implement fairness mechanisms, in the context of Multiplayer Ultimatum Games. We focus on network-based role assignment and show that attributing the role of Proposer to low-connected nodes increases the fairness levels in a population. We evaluate the effectiveness of low-degree Proposer assignment considering networks with different average connectivities, group sizes, and group voting rules when accepting proposals (e.g., majority or unanimity). We further show that low-degree Proposer assignment is efficient, in optimizing not only individuals’ offers but also the average payoff level in the population. Finally, we show that stricter voting rules (i.e., imposing an accepting consensus as a requirement for collectives to accept a proposal) attenuate the unfairness that results from situations where high-degree nodes (hubs) play as Proposers. Our results suggest new routes to use role assignment and voting mechanisms to prevent unfair behaviors from spreading on complex networks.

Funder

FCT-Portugal

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3