Force Magnitude Reconstruction Using the Force Transmissibility Concept

Author:

Lage Y. E.1,Maia N. M. M.1,Neves M. M.1

Affiliation:

1. LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

Abstract

This paper proposes the reconstruction of forces, based on the direct and inverse problems of transmissibility in multiple degree of freedom (MDOF) systems. The objective and novelty are to use the force transmissibility to calculate reactions given the applied loads (and vice versa). This method, relating two sets of forces, proves to be an alternative to the common inverse problem based on the measurement of FRFs and operational accelerations to determine operational forces, as it can be advantageous in some cases. This implies thea prioriknowledge of the transmissibility of the structure, either experimentally or numerically. In this study a finite element model is built, describing with enough accuracy the dynamic behavior of the structure. The numerical model will play a key role in the construction of the transmissibility matrix; this will be used to evaluate either the reaction or the applied forces, using experimental data. This constitutes a hybrid methodology, which is validated experimentally. The authors present several comparisons between reconstructed and experimentally measured sets of forces. It is shown that the proposed method is able to produce good results in the reconstruction of the forces, underlining its potential for other structures and possible applications.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3