Remote Sensing Image Land Classification Based on Deep Learning

Author:

Zhang Kai1ORCID,Hu Chengquan12ORCID,Yu Hang3ORCID

Affiliation:

1. School of Computing, Changchun University of Finance and Economics, Jilin, Changchun 130122, China

2. School of Computing, Jilin University, Jilin, Changchun 130022, China

3. School of Computing, Jilin Agricultural University, Jilin, Changchun 130022, China

Abstract

Aiming at the problems of high-resolution remote sensing images with many features and low classification accuracy using a single feature description, a remote sensing image land classification model based on deep learning from the perspective of ecological resource utilization is proposed. Firstly, the remote sensing image obtained by Gaofen-1 satellite is preprocessed, including multispectral data and panchromatic data. Then, the color, texture, shape, and local features are extracted from the image data, and the feature-level image fusion method is used to associate these features to realize the fusion of remote sensing image features. Finally, the fused image features are input into the trained depth belief network (DBN) for processing, and the land type is obtained by the Softmax classifier. Based on the Keras and TensorFlow platform, the experimental analysis of the proposed model shows that it can clearly classify all land types, and the overall accuracy, F1 value, and reasoning time of the classification results are 97.86%, 87.25%, and 128 ms, respectively, which are better than other comparative models.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3