Adaptive Fusion Design Using Multiscale Unscented Kalman Filter Approach for Multisensor Data Fusion

Author:

Wang Huadong1,Dong Shi12

Affiliation:

1. School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, China

2. School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

In order to improve the reliability of measurement data, the multisensor data fusion technology has progressed greatly in improving the accuracy of measurement data. This paper utilizes the real-time, recursive, and optimal estimation characteristics of unscented Kalman filter (UKF), as well as the unique advantages of multiscale wavelet transform decomposition in data analysis to effectively integrate observational data from multiple sensors. A new multiscale UKF-based multisensor data fusion algorithm is proposed by combining the UKF with multiscale signal analysis. Firstly, model-based UKF is introduced into the multiple sensors, and then the model is decomposed at multiple scales onto the coarse scale with wavelets. Next, signals decomposed from fine to coarse scales are adjusted using the denoised observational data from corresponding sensors and reconstructed with wavelets to obtain the fused signals. Finally, the processed data are fused using adaptive weighted fusion algorithm. Comparison of simulation and experimental results shows that the proposed method can effectively improve the antijamming capability of the measurement system and ensure the reliability and accuracy of sensor measurement system compared to the use of data fusion algorithm alone.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Data Fusion Algorithm of the Improved BP Neural Network by Particle Swarm Optimization;2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS);2021-12-17

2. GNSS and LNSS Positioning of Unmanned Transport Systems: The Brief Classification of Terrorist Attacks on USVs and UUVs;Electronics;2021-02-07

3. Mixed-Degree Spherical Simplex-Radial Cubature Kalman Filter;Mathematical Problems in Engineering;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3