Long Course Hyperbaric Oxygen Stimulates Neurogenesis and Attenuates Inflammation after Ischemic Stroke

Author:

Lee Ying-Sheng12,Chio Chung-Ching3,Chang Ching-Ping4,Wang Liang-Chao15,Chiang Po-Min1,Niu Kuo-Chi34,Tsai Kuen-Jer1

Affiliation:

1. Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan

2. Department of Emergency Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan

3. Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan

4. Department of Biotechnology, Southern Taiwan University, Tainan 710, Taiwan

5. Department of Surgery, National Cheng Kung University, Tainan 704, Taiwan

Abstract

Several studies have provided evidence with regard to the neuroprotection benefits of hyperbaric oxygen (HBO) therapy in cases of stroke, and HBO also promotes bone marrow stem cells (BMSCs) proliferation and mobilization. This study investigates the influence of HBO therapy on the migration of BMSCs, neurogenesis, gliosis, and inflammation after stroke. Rats that sustained transient middle cerebral artery occlusion (MCAO) were treated with HBO three weeks or two days. The results were examined using a behavior test (modified neurological severity score, mNSS) and immunostaining to evaluate the effects of HBO therapy on migration of BMSCs, neurogenesis, and gliosis, and expression of neurotrophic factors was also evaluated. There was a lower mNSS score in the three-week HBO group when compared with the two-day HBO group. Mobilization of BMSCs to an ischemic area was more improved in long course HBO treatments, suggesting the duration of therapy is crucial for promoting the homing of BMSCs to ischemic brain by HBO therapies. HBO also can stimulate expression of trophic factors and improve neurogenesis and gliosis. These effects may help in neuronal repair after ischemic stroke, and increasing the course of HBO therapy might enhance therapeutic effects on ischemic stroke.

Funder

National Cheng Kung University Hospital

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3