Affiliation:
1. Department of Mathematics, American University of Sharjah, Sharjah, UAE
Abstract
This paper considers the problem of controlling the solution of an initial boundary-value problem for a wave equation with time-dependent sound speed. The control problem is to determine the optimal sound speed function which damps the vibration of the system by minimizing a given energy performance measure. The minimization of the energy performance measure over sound speed is subjected to the equation of motion of the system with imposed initial and boundary conditions. Using the modal space technique, the optimal control of distributed parameter systems is simplified into the optimal control of bilinear time-invariant lumped-parameter systems. A wavelet-based method for evaluating the modal optimal control and trajectory of the bilinear system is proposed. The method employs finite CAS wavelets to approximate modal control and state variables. Numerical examples are presented to demonstrate the effectiveness of the method in reducing the energy of the system.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献