In situCharacterisation of Living Cells by Raman Spectroscopy

Author:

Notingher I.1,Verrier S.12,Romanska H.2,Bishop A. E.2,Polak J. M.2,Hench L. L.1

Affiliation:

1. Department of Materials, South Kensington Campus, Imperial College of Science, Technology and Medicine, London SW7 2BP, UK

2. Tissue Engineering Centre, Chelsea and Westminster Campus, Imperial College of Science, Technology and Medicine, London SW10 9NH, UK

Abstract

We report the first Raman spectra of individual living and dead cells (MLE-12 line) cultured on bioinert standard poly-L-lysine coated fused silica and on bioactive 45S5 Bioglass®measured at 785 nm laser excitation. At this excitation wavelength no damage was induced to the cells even after 40 minutes irradiation at 115 mW power, as indicated by cell morphology observation and trypan blue viability test. We show that shorter wavelength lasers, 488 nm and 514 nm, cannot be used because they induce damage to the cells at very low laser powers (5 mW) and short irradiation times (5–20 minutes). The most important differences between the spectra of living and dead cells are in the 1530–1700 cm−1range, where the dead cells have strong peaks at 1578 cm−1and 1607 cm−1. Other differences occur around the DNA peak at 1094 cm−1. Our study establishes the feasibility of using the 785 nm laser for anin situreal-time non-invasive method to follow biological events (proliferation, differentiation, cell death, etc.) within individual cells cultured on bioactive scaffolds in their physiologic environment over long periods of time.

Funder

US Defence Advanced Research Projects Agency

Publisher

Hindawi Limited

Subject

Spectroscopy

Cited by 208 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3