Identification of Methylation Signatures and Rules for Sarcoma Subtypes by Machine Learning Methods

Author:

Ren Jingxin1,Zhou XianChao2,Guo Wei3,Feng KaiYan4,Huang Tao56ORCID,Cai Yu-Dong1ORCID

Affiliation:

1. School of Life Sciences, Shanghai University, Shanghai 200444, China

2. Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China

3. Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China

4. Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China

5. Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China

6. CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Abstract

Sarcoma, the second common type of solid tumor in children and adolescents, has a wide variety of subtypes that are often not properly diagnosed at an early stage, leading to late metastases and causing serious loss of life and property to patients and families. It exhibits a high degree of heterogeneity at the cellular, molecular, and epigenetic levels, where DNA methylation has been proposed to play a role in the diagnosis of sarcoma subtypes. Thus, this study is aimed at finding potential biomarkers at the DNA methylation level to distinguish different sarcoma subtypes. A machine learning process was designed to analyse sarcoma samples, each of which was represented by lots of methylation sites. Irrelevant sites were removed using the Boruta method, and remaining sites related to the target variables were kept for further analyses. Afterward, three feature ranking methods (LASSO, LightGBM, and MCFS) were adopted to rank these features, and six classification models were constructed by combining incremental feature selection and two classification algorithms (decision tree and random forest). Among these models, the performance of RF model was higher than that of DT model under all three ranking conditions. The specific expression of genes obtained from the annotation of highly correlated methylation site features, such as PRKAR1B, INPP5A, and GLI3, was proven to be associated with sarcoma by publications. Moreover, the quantitative rules obtained by decision tree algorithm helped us to understand the essential differences between various sarcoma types and classify sarcoma subtypes, providing a new means of clinical identification and determining new therapeutic targets.

Funder

Fund of the Key Laboratory of Tissue Microenvironment and Tumor of Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3