Synthesis, Carbonic Anhydrase II/IX/XII Inhibition, DFT, and Molecular Docking Studies of Hydrazide-Sulfonamide Hybrids of 4-Methylsalicyl- and Acyl-Substituted Hydrazide

Author:

Khushal Adil1,Mumtaz Amara1ORCID,Shadoul Wamda Ahmed2,Zaidi Syeda Huda Mehdi3,Rafique Hummera4,Munir Abida1,Maalik Aneela5,Shah Syed Jawad Ali2,Baig Ayesha6,Khawaja Wajiha1,al-Rashida Mariya7,Hashmi Muhammad Ali3ORCID,Iqbal Jamshed2ORCID

Affiliation:

1. Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan

2. Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, Pakistan

3. Department of Chemistry, University of Education, Attock Campus Attock 43600, Pakistan

4. Department of Chemistry, University of Gujrat, Gujrat, Pakistan

5. Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Pakistan

6. Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan

7. Department of Chemistry, Forman Christian College, Lahore, Pakistan

Abstract

Carbonic anhydrases (CAs and EC 4.2.1.1) are the Zn2+ containing enzymes which catalyze the reversible hydration of CO2 to carbonate and proton. If they are not functioning properly, it would lead towards many diseases including tumor. Synthesis of hydrazide-sulfonamide hybrids (19-36) was carried out by the reaction of aryl (10-11) and acyl (12-13) hydrazides with substituted sulfonyl chloride (14-18). Final product formation was confirmed by FT-IR, NMR, and EI-MS. Density functional theory (DFT) calculations were performed on all the synthesized compounds to get the ground-state geometries and compute NMR properties. NMR computations were in excellent agreement with the experimental NMR data. All the synthesized hydrazide-sulfonamide hybrids were in vitro evaluated against CA II, CA IX, and CA XII isozymes for their carbonic anhydrase inhibition activities. Among the entire series, only compounds 22, 32, and 36 were highly selective inhibitors of hCA IX and did not inhibit hCA XII. To investigate the binding affinity of these compounds, molecular docking studies of compounds 32 and 36 were carried out against both hCA IX and hCA XII. By using BioSolveIT’s SeeSAR software, further studies to provide visual clues to binding affinity indicate that the structural elements that are responsible for this were also studied. The binding of these compounds with hCA IX was highly favorable (as expected) and in agreement with the experimental data.

Funder

Higher Education Commission, Pakistan

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3