QoE-Oriented Cooperative Broadcast Optimization for Vehicular Video Streaming

Author:

Liu Jingyao1,Feng Guangsheng1ORCID,Sun Jiayu1,Zheng Liying1,Wang Huiqiang1ORCID

Affiliation:

1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

Abstract

The popularity of online vehicular video has caused enormous information requests in Internet of vehicles (IoV), which brings huge challenges to cellular networks. To alleviate the pressure of base station (BS), Roadside Units (RSUs) and vehicle peers are introduced to collaboratively provide broadcast services to vehicle requesters where vehicles act as both service providers and service requesters. In this paper, we propose an efficient framework leveraging scalable video coding (SVC) technique to improve quality of experience (QoE) from two perspectives: (1) maximizing the data volume received by all requesters and (2) determining buffer action based on playback fluency and average playback quality. For (1), potential providers cooperate to determine the precached video content and delivery policy with the consideration of vehicular mobility and wireless channel status. If one provider fails, other sources will complement to provide requested content delivery. Therefore, their cooperation can improve the QoE and enhance the service reliability. For (2), according to buffer occupancy status, vehicle requesters manage buffer action whether to buffer new segments or upgrade the enhancement level of unplayed segment. Furthermore, the optimization of the data volume is formulated as an integer nonlinear programming (INLP) problem, which can be converted into some linear integer programming subproblems through McCormick envelope method and Lagrange relaxation. Numerical simulation results show that our algorithm is effective in improving total data throughput and QoE.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference51 articles.

1. Cisco visual networking index: global mobile data traffic forecast update, 2017–2022;GMDT Forecast;Update,2019

2. Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey

3. 5G Ultra-Dense Cellular Networks

4. Collective data-sanitization for preventing sensitive information inference attacks in social networks;Z. Cai;IEEE Transactions on Dependable and Secure Computing,2016

5. A private and efficient mechanism for data uploading in smart cyber-physical systems;Z. Cai;IEEE Transactions on Network Science and Engineering,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3