Empirical Analysis of Financial Depth and Width Based on Convolutional Neural Network

Author:

Ye Mengqi1ORCID,Zhang Lijun2ORCID

Affiliation:

1. Zhejiang Agricultural Business College, Shaoxing, Zhejiang 312000, China

2. School of Management, Hebei Geo University, Shijiazhuang, Hebei 050031, China

Abstract

There are great differences in financial and economic development in different regions. In different time series and different regions, the effects of financial depth and width on economic development are also different. This paper selects neural network to establish the economic benefit model of financial depth and breadth, which can deeply explore the relationship between financial data and economic data. In order to determine the optimal convolutional neural network parameters, the optimal convolutional neural network parameters are determined through comparative simulation analysis. The convolutional neural network model based on the optimal parameters is applied to the empirical analysis of the effect of financial and economic development in X region. In order to obtain the optimal convolutional neural network parameters, different convolution layers, convolution core size, and convolution core number are compared and simulated. The convolutional neural network model with optimal parameters is used to simulate the financial and economic data of X region. The simulation results show that the density of financial personnel has a certain impact on economic development, so it is necessary to improve the comprehensive quality of financial personnel and promote regional economic development. Therefore, this paper seeks an effective method to study the effect of financial breadth and depth on economic development which can provide a feasible idea for the in-depth research method of financial and economic development.

Funder

Hebei GEO University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3