Affiliation:
1. Institute of Engineering Research (I3A) of the University of Zaragoza, 50018 Zaragoza, Spain
Abstract
Internet of Things imposes demanding requirements on wireless sensor networks as key players in context awareness procurement. Temporal and spatial ubiquities are one of the essential features that meet technology boundaries in terms of energy management. Limited energy availability makes anywhere and anytime sensing a challenging task that forces sensor nodes to wisely use every bit of available power. One of the earliest and most determining decisions in the electronic design stage is the choice of the silicon building blocks that will conform hardware architecture. Designers have to choose between dual architectures (based on a low-power microcontroller controlling a radio module) and single architectures (based on a system on chip). This decision, together with finite state machine design and application firmware, is crucial to minimize power consumption while maintaining expected sensor node performance. This paper provides keys for energy analysis of wireless sensor node architecture according to the specific requirements of any application. It thoroughly analyzes pros and cons of dual and single architectures providing designers with the basis to select the most efficient for each application. It also provides helpful considerations for optimal sensing-system design, analyzing how different strategies for sensor measuring and data exchanging affect node energy consumption.
Subject
Computer Networks and Communications,General Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献