Affiliation:
1. Petroleum Exploration & Production Research Institute, Sinopec, Beijing 102206, China
2. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Shahe, Beijing 102206, China
Abstract
The presence of water, i.e., connate or hydraulic fracturing water, along with the gaseous hydrocarbons in shale nanopores is largely overlooked by previous studies. In this work, a new unified real gas-transport model has been developed for both organic and inorganic porous media accounting for the nanoconfined water film flow. More specifically, a gas core flows in the center of the organic/inorganic pore surrounded by a water film which can be further divided into an interfacial region (near-wall water) and bulk region (bulk water). We differentiate the varying water viscosity between the two regions and consider disparate slip boundaries; that is, the near-wall water can slip along the hydrophobic organic pore surface while it is negligible in hydrophilic inorganic pores. Incorporating modified boundary conditions into the Navier-Stokes equations, gas transport model through single organic/inorganic pore is derived. The model is also comprehensively scaled up to the porous media scale considering the porosity, tortuosity, and total organic carbon (TOC) contents. Results indicate that the gas flow capacity decreases in moist conditions with mobile or nonmobile water film. A mobile water film, however, compensates its negative effect up to 50% by enhancing gas flow compared with static water molecules. The real gas flow is dominated by the gas slippage and water film mobility which are dependent upon pore-scale parameters such as pore sizes, topology, pressure, and surface wettability. Compared with inorganic pores, gas transport in organic pores is greatly enhanced by the water film flow due to the strong water slip. Moreover, the contribution of water film mobility is remarkable in small pores with large contact angles, especially at high pressures. At moist conditions, the real gas effect enhances gas flow by improving both gas slippage and water film mobility, which is more prominent in smaller pores at high pressures. The presented model and its results will further advance our understanding of the mechanisms responsible for the water and gas transport in nanoporous media, and consequently, the hydrocarbon exploration of shale reservoirs.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献