A Novel Security Methodology for Smart Grids: A Case Study of Microcomputer-Based Encryption for PMU Devices

Author:

Varan Metin1ORCID,Akgul Akif2ORCID,Kurugollu Fatih3ORCID,Sansli Ahmet4ORCID,Smith Kim3

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Serdivan 54050, Sakarya, Turkey

2. Department of Computer Engineering, Faculty of Engineering, Hitit University, Corum 19030, Turkey

3. Department of Electronics, Computing and Mathematics, Derby University, Derby, UK

4. Department of Computer and Information Science Engineering, Sakarya University, Serdivan 54050, Sakarya, Turkey

Abstract

Coordination of a power system with the phasor measurement devices (PMUs) in real time on the load and generation sides is carried out within the context of smart grid studies. Power systems equipped with information systems in a smart grid pace with external security threats. Developing a smart grid which can resist against cyber threats is considered indispensable for the uninterrupted operation. In this study, a two-way secure communication methodology underpinned by a chaos-based encryption algorithm for PMU devices is proposed. The proposed system uses the IEEE-14 busbar system on which the optimum PMU placement has been installed. The proposed hyperchaotic system-based encryption method is applied as a new security methodology among PMU devices. The success of results is evaluated by the completeness of data exchange, durations, the complexity of encryption-decryption processes, and strength of cryptography using a microcomputer-based implementation. The results show that the proposed microcomputer-based encryption algorithms can be directly embedded as encryption hardware units into PMU and PDC devices which have very fast signal processing capabilities taking into considerations the acceptable delay time for power system protection and measuring applications and quality metering applications which is 2 ms and 10 ms, respectively. While proposed algorithms can be used in TCP or UDP over IP-based IEEE C37.118, IEC 61850, and IEC 61850-90-5 communication frameworks, they can also be embedded into electronic cards, smartcards, or smart tokens which are utilized for authentication among smart grid components.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3