Optimized Design of Multilines Center of Subway AFC System via Distributed File System and Bayesian Network Model

Author:

Fang Hui12ORCID,Jiang Jiandi2,Lin Feng3,Zhang Wei1ORCID

Affiliation:

1. Zhejiang University, Hangzhou, Zhejiang 310027, China

2. Mechanical and Electrical Department, Ningbo Rail Transportation Group Co., Ltd., Ningbo, Zhejiang 315040, China

3. Digital Information Division, UniTTEC Co., Ltd., Hangzhou, Zhejiang 310051, China

Abstract

Automatic fare collection system (AFCS) is a modern, automatic, networked toll collection system for rail transit ticket sales, collection, billing, charging, statistics, sorting, and management. To realize the subway transit networking operation, this paper designs the subway AFCS based on a distributed file system (DFS), namely, Gluster File System (GlusterFS). Firstly, the multiline center (MLC) in the subway AFCS is designed to analyze the status and current situation of distributed file processing in subway MLC system; secondly, the relevant technical theories are summarized, the Bayesian Network (BN) theoretical model and DFS are explored, and the principles of four DFS are comparatively analyzed; thirdly, the architecture and cluster mode of GlusterFS is expounded, and then based on GlusterFS, the architecture of subway AFCS is discussed. This paper presents several innovation points: first, the subway AFCS is designed based on GlusterFS by analyzing and aiming at the functional requirements, performance requirements, and safety requirements of the MLC subway system; second, the safety risk analysis (SRA) of AFCS is conducted from six security requirements, and a Web scanning system is designed to ensure the system data security. Finally, the design scheme is used to analyze the subway passenger flow and power consumption. The results demonstrate that the design scheme can competently adapt to three different application scenarios. Through comparison of two deployment modes of the Web scanning system, the data security Web scanning system can ensure the safe operation of the AFCS. Furthermore, the statistical analysis of subway passenger flow and power supply data shows that the proposed scheme can support the smooth operation of the subway system, which has significant practical value.

Funder

national key research and development program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3