Electric Transverse Emissivity of Sinusoidal Surfaces Determined by a Differential Method: Comparison with Approximation of Geometric Optics

Author:

Ghabara Taoufik1ORCID

Affiliation:

1. College of Science and Arts at Ar-Rass Department of Physics, Qassim University, Ministry of Higher Education, PO BOX: 53, Buraydah, Saudi Arabia

Abstract

We present in this paper a numerical study of the validity limit of the optics geometrical approximation in comparison with a differential method which is established according to rigorous formalisms based on the electromagnetic theory. The precedent studies show that this method is adopted to the study of diffraction by periodic rough surfaces. For periods much larger than the wavelength, the mechanism is analog to what happens in a cavity where a ray is trapped and undergoes a large number of reflections. For gratings with a period much smaller than the wavelength, the roughness essentially behaves as a transition layer with a gradient of the optical index. Such a layer reduces the reflection there by increasing the absorption. The code has been implemented for TE polarization. We determine by the two methods such as differential method and the optics geometrical approximation the emissivity of gold and tungsten cylindrical surfaces with a sinusoidal profile, for a wavelength equal to 0.55 microns. The obtained results for a fixed height of the grating allowed us to delimit the validity domain of the optic geometrical approximation for the treated cases. The emissivity calculated by the differential method and that given on the basis of the homogenization theory are satisfactory when the period is much smaller than the wavelength.

Funder

Qassim University

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3