Multidrug-Resistant Salmonella enterica Serovar Rissen Clusters Detected in Azores Archipelago, Portugal

Author:

Silveira Leonor1ORCID,Pinto Miguel2ORCID,Isidro Joana3,Pista Ângela1ORCID,Themudo Patrícia3,Vieira Luís45,Machado Jorge1,Gomes João Paulo2ORCID

Affiliation:

1. National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal

2. Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal

3. National Institute of Agrarian and Veterinary Research, Bacteriology and Micology Laboratory, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal

4. Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal

5. Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculty of Medical Sciences, New University of Lisbon, Avenida Padre Cruz, 1649-016 Lisbon, Portugal

Abstract

Gastrointestinal infections caused by nontyphoidal Salmonella (NTS) remain one of the main causes of foodborne illness worldwide. Within the multiple existing Salmonella enterica serovars, the serovar Rissen is rarely reported, particularly as a cause of human salmonellosis. Between 2015 and 2017, the Portuguese National Reference Laboratory of Gastrointestinal Infections observed an increase in the number of clinical cases caused by multidrug-resistant (MDR) S. enterica serovar Rissen, particularly from the Azores archipelago. In the present study, we analyzed by whole genome sequencing (WGS) all clinical, animal, food, and environmental isolates received up to 2017 in the Portuguese Reference Laboratories. As such, through a wgMLST-based gene-by-gene analysis, we aimed to identify potential epidemiological clusters linking clinical and samples from multiple sources, while gaining insight into the genetic diversity of S. enterica serovar Rissen. We also investigated the genetic basis driving the observed multidrug resistance. By integrating 60 novel genomes with all publicly available serovar Rissen genomes, we observed a low degree of genetic diversity within this serovar. Nevertheless, the majority of Portuguese isolates showed high degree of genetic relatedness and a potential link to pork production. An in-depth analysis of these isolates revealed the existence of two major clusters from the Azores archipelago composed of MDR isolates, most of which were resistant to at least five antimicrobials. Considering the well-known spread of MDR between gastrointestinal bacteria, the identification of MDR circulating clones should constitute an alert to public health authorities. Finally, this study constitutes the starting point for the implementation of the “One Health” approach for Salmonella surveillance in Portugal.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3