An Overshoot-Constrained Fast Setpoint Control for Nanopositioning Systems with Switched Controllers

Author:

Wu Zhizheng1ORCID,Yue Tengfei1,Jiang Xinxiang1,Cao Ning2ORCID,Li Feng3ORCID,Qian Fanfan1,Dziki Merveilles1,Zhang Zhu4,Liu Mei1,Xie Shaorong1

Affiliation:

1. Department of Precision Mechanical Engineering, Shanghai University, Shanghai 200444, China

2. School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

3. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

4. Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, Netherlands

Abstract

Nanopositioning control as the key technology has been applied in many fields such as near-field optics, biomedical engineering, and nanomanipulation, where it is required to possess high positioning accuracy, reliability, and speed. In this paper, a switched PID controller-based fast setpoint control method is proposed for nanopositioning systems. In order to improve the setpoint speed of the nanopositioning system without a large overshoot, a switched controller consisting of the approach mode and smooth mode is synthesized. The overshoot constraint of the resulting switched closed-loop system is investigated within a set of bilinear matrix inequalities, based on which the search of the controller parameters can be further processed by solving the properly formulated synthesis algorithm. The proposed control method is evaluated in a nanopositioning experimental system driven by a PZT actuator, and the experimental results demonstrate the effectiveness of the switched PID controller for the fast setpoint approaching operation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3