Gas Exchange and Productivity in Temperate and Droughty Years of Four Eastern, Elite Loblolly Pine Genotypes Grown in the Western Gulf Region

Author:

Blazier Michael A.1ORCID,Tyree Michael C.23ORCID,Sword Sayer Mary Anne4,KC Dipesh1,Hood Wilson G.3,Osbon Bradley S.1

Affiliation:

1. Louisiana State University AgCenter, Hill Farm Research Station, Homer, LA 71040, USA

2. Department of Biology, Indiana University of Pennsylvania, Indiana, PA 15705, USA

3. Work performed while at: School of Forestry, Louisiana Tech University, P.O. Box 10138, Ruston, LA 71272, USA

4. USDA Forest Service, Southern Research Station, Pineville, LA 71360, USA

Abstract

Loblolly pine plantations in the western portion of the species’ range are sometimes planted with genotypes from the eastern portion of its range to improve plantation productivity. Advances in loblolly pine breeding have led to the development of clonally propagated genotypes with higher potential growth rates and better form than more commonly planted half-sib genotypes. At a site in the western portion of the loblolly pine range, four genotypes from the eastern portion of the loblolly pine range were established. Two genotypes (HS756 and HS8103) were half-sib, and two genotypes (V9 and V93) were varieties. The V93 genotype was propagated from the HS756 genotype. The objective of this study was to determine the effects of genotype on seasonal trends in gas exchange parameters at the leaf and crown levels, growth, and biomass allocation patterns. During the two-year study, one year had precipitation and temperature trends similar to the long-term average and one year had extreme drought, with record heat. The HS756, V9, and V93 genotypes had the highest height growth throughout the study. The V93 genotype was sensitive to the drought; its leaf- and crown-levelAsatandgs, declined during the drought more markedly than those of the other genotypes. Although itsAsatandgswere affected by drought, height growth productivity of V93 may have been sustained during the drought by its biomass partitioning pattern of allocating higher proportions of its root biomass to small and fine roots and its aboveground biomass to foliage. These results suggest that a variety such as V93 could be more susceptible to changes in C fixation and water uptake with recurrent drought.

Funder

LSU Ag Center

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3