Graph-Theoretic Based Connectivity Restoration Algorithms for Mobile Sensor Networks

Author:

Mi ZhenqiangORCID,Hsiao Rong-Shue,Xiong Zenggang,Yang Yang

Abstract

In mobile sensor networks (MSN), actuated sensors collaborate with each other in some predefined missions. The collaboration requires application-level coordination based on a strongly connected underlying network, which is often in an infrastructure-free ad hoc manner. The particular network topology provides flexibility as well as vulnerability to the potential applications of MSN; for example, the connectivity can be easily jeopardized if the network is partitioned into disjoint segments from the failure of some critical sensors. In this paper, a critical sensor determination and substitution (CSDS) strategy is proposed to address the important problem of network partitions in mobile sensor networks (MSN) due to the failure of particular sensors. CSDS utilizes a graph-theoretic method to locally identify critical sensors with 2-hop neighboring information. Then, an efficient backup sensor selection algorithm is proposed to monitor the critical sensors and, if necessary, substitute it in order to eliminate the partitions in MSN. The main contribution of our proposed work is that CSDS requires the relocation of only one sensor in each partition elimination process, so that the impacts on the primary missions of the MSN are minimized. Experimental simulations are conducted to evaluate the correctness and effectiveness of CSDS.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SDN-based Connectivity Restoration for Partitioned Flying Ad hoc Networks;2023 9th International Conference on Computer and Communications (ICCC);2023-12-08

2. Resilient UAV Swarm Communications With Graph Convolutional Neural Network;IEEE Journal on Selected Areas in Communications;2022-01

3. Distributed connectivity restoration in multichannel wireless sensor networks;Computer Networks;2017-11

4. Centralized connectivity restoration in multichannel wireless sensor networks;Journal of Network and Computer Applications;2017-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3