Local and Deep Features Based Convolutional Neural Network Frameworks for Brain MRI Anomaly Detection

Author:

Einy Sajad1ORCID,Saygin Hasan1ORCID,Hivehch Hemrah1ORCID,Dorostkar Navaei Yahya2ORCID

Affiliation:

1. Istanbul Aydin University, Department of Application and Research Center for Advanced Studies, Istanbul, Turkey

2. Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract

A brain tumor is an abnormal mass or growth of a cell that leads to certain death, and this is still a challenging task in clinical practice. Early and correct diagnosis of this type of cancer is very important for the treatment process. For this reason, this study aimed to develop computer-aided systems for the diagnosis of brain tumors. In this research, we proposed three different end-to-end deep learning approaches for analyzing effects of local and deep features for brain MRI images anomaly detection. The first proposed system is Directional Bit-Planes Deep Autoencoder (DBP-DAE) which extracts and learns local and direction features. The DBP-DAE by decomposition of a local binary pattern (LBP) into eight bit-planes extracts are directional and inherent local-structure features from the input image and learns robust feature for classification purposes. The second one is a Dilated Separable Residual Convolutional Network (DSRCN) which extracts high (deep) and low-level features. The main advantage of this approach is that it is robust and shows stable results regardless to size of image database and to solve overfitting problems. To explore the effects of mixture of local and deep extracted feature on accuracy of classification of brain anomaly, a multibranch convolutional neural network approach is proposed. This approach is designed according to combination of DBP-DAE and DSRCN in an end-to-end manner. Extensive experiments conducted based on brain tumor in MRI image public access databases and achieves significant results compared to state-of-the-art algorithms. In addition, we discussed the effectiveness and applicability of CNNs with a variety of different features and architectures for brain abnormalities such as Alzheimer’s.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3