Application of Improved Manta Ray Foraging Optimization Algorithm in Coverage Optimization of Wireless Sensor Networks

Author:

Zhu Fang1ORCID,Wang Wenhao1ORCID,Li Shan1

Affiliation:

1. School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

Abstract

For the shortcomings of the manta ray foraging optimization (MRFO) algorithm, like slow convergence speed and difficult to escape from the local optimum, an improved manta ray foraging algorithm based on Latin hypercube sampling and group learning is proposed. Firstly, the Latin hypercube sampling (LHS) method is introduced to initialize the population. It divides the search space evenly so that the initial population covers the whole search space to maintain the diversity of the initial population. Secondly, in the exploration stage of cyclone foraging, the Levy flight strategy is introduced to avoid premature convergence. Before the somersault foraging stage, the adaptive t-distribution mutation operator is introduced to update the population to increase the diversity of the population and avoid falling into the local optimum. Finally, for the updated population, it is divided into leader group and follower group according to fitness. The follower group learns from the leader group, and the leader group learns from each other through differential evolution to further improve the population quality and search accuracy. 15 standard test functions are selected for comparative tests in low and high dimensions. The test results show that the improved algorithm can effectively improve the convergence speed and optimization accuracy of the original algorithm. Moreover, the improved algorithm is applied to wireless sensor network (WSN) coverage optimization. The experimental results show that the improved algorithm increases the network coverage by about 3% compared with the original algorithm, and makes the optimized node distribution more reasonable.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference45 articles.

1. Attribute reduction method based on improved binary glowworm swarm optimization algorithm and neighborhood rough set;P. E. N. G. Peng;Pattern Recognition and Artificial Intelligence,2020

2. A hybrid state transition optimization algorithm based on adaptive quasi-Newton method and its application;X. Zhou;Control and Decision,2021

3. Multi-strategy ensemble grey wolf optimizer and its application to feature selection

4. Cauchy with whale optimizer based eagle strategy for multi-level color hematology image segmentation

5. Improved PSO based automatic generation control of multi-source nonlinear power systems interconnected by AC/DC links

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3