Experimental Study on the Strength Characteristics of Expansive Soils Improved by the MICP Method

Author:

Tian Xuwen1ORCID,Xiao Hongbin1ORCID,Li Zixiang1,Li Zhenyu1,Su Huanyu1,Ouyang Qianwen1

Affiliation:

1. School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410000, China

Abstract

Microbially induced calcite precipitation (MICP) has been a promising method to improve geotechnical engineering properties; however, there are few literatures about the application of the MICP method to improve the strength characteristics of expansive soils with low permeability. In this paper, a series of CD triaxial tests were carried out to investigate the effect of the MICP method on the strength characteristics of the expansive soils. The results show that the shear strength of the specimens increased with the increase in the cementation solution and eventually reached a stable value. The MICP method can significantly improve the shear strength index of the expansive soils. The cohesion of the expansive soils was increased from 29.52 kPa to 39.41 kPa, and the internal friction angle was increased from 20.13° to 29.58°. The stress-strain curves of expansive soil samples improved by the MICP method show a hyperbolic relationship, which is characterized by strain hardening. The hyperbolic model was chosen to describe the stress-strain relationship of the expansive soils improved by the MICP method, and the predicted results were in good agreement with the measured results. Moreover, we performed a scanning electron microscope (SEM) experiment and revealed the mechanism of the MICP method to improve the strength characteristics of expansive soils. The conclusions above can provide a theoretical basis to further study the strength characteristics of improved expansive soils by the MICP method.

Funder

Research Foundation of Education Bureau of Hunan Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3