Comprehensive Analysis of DNA Methylation and Transcriptome to Identify PD-1-Negative Prognostic Methylated Signature in Endometrial Carcinoma

Author:

Cao Lu12ORCID,Ma Xiaoqian12,Rong Pengfei1,Zhang Juan12,Yang Min12,Wang Wei12ORCID

Affiliation:

1. Department of Radiology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, China

2. The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, China

Abstract

Background. Epigenetic mechanism plays an important role in endometrial carcinoma (EC). This study was designed to analyze the epigenetic mechanism between DNA methylation-driven genes (DEDGs) and drugs targeting DEDGs and to develop a DEDG score model for predicting the prognosis of EC. Methods. Expression profile and methylation profile data of PD-1-negative EC samples were obtained from TCGA. To obtain intersected DEDGs, differentially expressed genes (DEGs) and differentially methylated genes from tumor tissues and normal tissues were analyzed by limma. A linear discriminant classification model was constructed using the gene expression profile of DMDGs, methylation profile of TSS1500, TSS200, and gene body regions. Principal component analysis (PCA) and ROC analysis were conducted. The protein-drug interactions analysis of DMDGs was performed using Network Analyst 3.0 tool. Lasso Cox regression analysis was used to screen prognostic DNA methylation driving gene and to build a risk score model. The ROC curve and Kaplan-Meier survival curve were plotted to evaluate the model prediction capability. Results. A total of 96 DMDGs were screened from the three regions, distributed on 22 chromosomes, with consistent methylation patterns in different gene regions. Both the expression profile and methylation profile of the three regions can neatly distinguish tumor samples from normal ones, with a high classifying performance. A gene signature, which consisted of ELFN1-AS1 and ZNF132, could classify EC patients into a high-risk group and low-risk group. Prognosis of the high-risk group was significantly worse than that of the low-risk group. The risk model showed a high performance in predicting the prognosis of EC. Conclusion. We successfully established a risk score system with two DMDGs, which showed a high prediction accuracy of EC prognosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3