Ferromagnetic-Dielectric Ni0.5Zn0.5Fe1.9O4−δ/PbZr0.52Ti0.48O3Particulate Composites: Electric, Magnetic, Mechanical, and Electromagnetic Properties

Author:

Venkata Ramana M.12,Ramamanohar Reddy N.1,Murty B. S.2,Murthy V. R. K.3,Siva Kumar K. V.1

Affiliation:

1. Ceramic Composite Materials Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, India

2. Nanotechnology Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Chennai 600 036, India

3. Microwave Laboratory, Department of Physics, Indian Institute of Technology, Chennai 600 036, India

Abstract

Novel ferromagnetic-dielectric particulate composites of Ni0.5Zn0.5Fe1.95O4−δ(NZF) and PbZr0.52Ti0.48O3(PZT) were prepared by conventional ceramic method. The presence of two phases in composites was confirmed by XRD technique. The variations of dielectric constant () with frequency in the range of 100 kHz–1 MHz at room temperature and also with temperature at three different frequencies (50 kHz, 100 kHz, and 500 kHz) were studied. Detailed studies on the dielectric properties were done confirming that the magnetoelectric interaction between the constituent phases may result in various anomalies in the dielectric behaviour of the composites. It is proposed that interfaces play an important role in the dielectric properties, causing space charge effects and Maxwell-Wagner relaxation, particularly at low frequencies and high temperatures. The piezoelectricd33constant was studied at room temperature, and thed33constant value decreased with ferrite content. Magnetic properties likeB-Hloops traces were studied to understand the saturation magnetic (Ms) and magnetic moment () of the present particulate composites. The magnetoelectric (ME) output was measured by varying dc bias magnetic field. A large ME output signal of 2780 mV/cm Oe was observed in the composite having 50% ferrite. The temperature variation of longitudinal modulus (L) and internal friction (Q−1) of these particulate composites at 104 kHz was studied in the temperature range 30°C–420°C by the composite oscillator technique. Longitudinal modulus showed a sharp minimum, and internal friction exhibits a sharp peak at ferroelectric-paraelectric phase transition. These ferroelectric-dielectric particulate composites were prepared with a view to using them as ME sensors and transducers.

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

Reference62 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3