Floor Failure Characteristics in Deep Island Longwall Panel: Theoretical Analysis and Field Verification

Author:

Wang Pengpeng12,Zhao Yixin123ORCID,Ren Qingshan12ORCID,Jiang Yaodong14,Zhang Cun12ORCID,Gao Yirui12

Affiliation:

1. Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 100083, China

2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

3. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China

4. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

Floor failure in deep coal mining above confined aquifers with high-water pressure may induce floor water inrush disasters. Considering the effects of mining stress and nonuniformly distributed water pressure, a mechanical calculation model of the island longwall panel in up-dip mining was established, and the stress distribution and floor failure characteristics were analyzed. The failure characteristics of the floor at NO. 2129 panel in Xingdong coal mine were detected by the borehole televiewer and microseismic monitoring system to validate the theoretical model. The results indicated that the floor failure characteristics along the strike and inclination of the island longwall panel in up-dip mining were “asymmetric inverted saddle-shaped” and “spoon-shaped,” respectively. The maximum floor failure depths before and after roof hydraulic fracturing (RHF) were 45.7 m and 29.1 m, respectively. The theoretical calculation results of the maximum depths of floor failure were 45.1 m and 29.9 m, respectively. The theoretical failure characteristics were consistent with those measured on site. The stress concentration magnitude and floor failure depth on the side of the isolated coal pillar were greater than those of other areas, and the water-inrush-prone zones were concentrated on the side of the isolated coal pillar near the intersection of the working face and the roadway. The research results could provide a certain reference for floor failure and water inrush mechanisms under complex geological conditions in deep mining.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3