A Branch and Bound Algorithm and Iterative Reordering Strategies for Inserting Additional Trains in Real Time: A Case Study in Germany

Author:

Tan Yuyan1ORCID,Jiang Zhibin2ORCID

Affiliation:

1. Institute of Railway Systems Engineering and Traffic Safety, Technical University of Braunschweig, Pockelsstrasse 3, 38106 Braunschweig, Germany

2. School of Transportation Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China

Abstract

With the aim of supporting the process of adapting railway infrastructure and future traffic needs, we have developed a method to insert additional trains efficiently to an existing timetable without introducing large consecutive delays to scheduled trains. In this work, the problem is characterized as a job-shop scheduling problem. In order to meet the limited time requirement and minimize deviations to the existing timetable, the modification that consists of retiming or reordering trains is implemented if and only if it potentially leads to a better solution. With these issues in mind, the problem of adding train paths is decomposed into two subproblems. One is finding the optimal insertion for a fixed order timetable and the other is reordering trains. The two subproblems are solved iteratively until no improvement is possible within a time limit of computation. An innovative branch and bound algorithm and iterative reordering strategy are proposed to solve this problem in real time. Unoccupied capacities are utilized as primary resources for additional trains and the transfer connections for passengers can be guaranteed in the new timetable. From numerical investigations, the proposed framework and associated techniques are tested and shown to be effective.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3