Unsteady Growth ofBaB2O4Single Crystal from High-Temperature Solution

Author:

Pan X. H.,Jin W. Q.,Jiang Y. F.,Liu Y.,Ai F.

Abstract

Two-dimensional growth ofBaB2O4single crystal from high-temperature solution was performed, and the motion of solid-liquid interface was observed in real time by differential interference microscopy. Results show that the solid-liquid interface exhibits the morphology of a vicinal face where steps with height of several microns are observed. The measurements of growth rate V and step propagating velocityυshow that both V andυfluctuate by up to 4050% of their average values, respectively, under constant external conditions. Such intrinsic fluctuations with time interval of the order of one second is mainly the result of step bunching, which has been confirmed by the gradual decrease of step spacing when approaching the edge of the growing interface. Besides above fluctuations, a longer-period oscillation of V (period interval of 45 seconds) is obtained for relatively rapid growth, which is triggered by the periodical alteration of step propagating directions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3