A New Environmentally Friendly Utilization of Energy Piles into Geotechnical Engineering in Northern China

Author:

Peng Jianguo1,Li Qingwen1ORCID,Huang Chungho2ORCID

Affiliation:

1. Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

In the past 30 years, because of built-in advantages, energy saving, pollution control, and sustainability, the energy pile system has had a rapid development around the world. Many scholars did numerous researches on the parameters’ optimization, heat exchange efficiency, and structure-soil response. Also, the researches of evolutional GSHP system using high temperature in deep mine and lager collection surface of tunnel lining were learned. At present, most of researchers are discussing the geothermal collection for the heating or cooling the building, and plenteous and significant research achievements have been obtained. It is a novel attempt to apply energy pile to geotechnical engineering, and good results have been achieved in engineering practice in Northern China. The area of northern China is a typical seasonal frozen region: the high temperature in summer and the cold weather and accumulated snow in winter will result in huge challenge and resource consumption of maintaince on highway tunnel, pavement, and other geotechnical engineering facilities. In this paper, taking example of using the geothermal heat exchanger to melt snow, the novel idea of using energy piles to prevent track in summer and crack in winter of pavement, and guaranteeing the safety of frost crack on tunnel lining were discussed. Also, through simulation research, we propose a buried pipe form with good heat transfer uniformity-spiral buried pipe, which has better engineering applicability. This shows us that the application of energy pile in geotechnical engineering will provide solutions to geotechnical problems, which will have a brilliant future.

Funder

State Key Laboratory of Building Safety and Built Environment

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3