Alpha-Glucosidase Inhibition, Antioxidant Activities, and Molecular Docking Study of Krom Luang Chumphon Khet Udomsak, a Thai Traditional Remedy

Author:

Limcharoen Thanchanok1ORCID,Chaniad Prapaporn23,Chonsut Piriya34ORCID,Punsawad Chuchard23ORCID,Juckmeta Thana34,Konyanee Atthaphon23,Rais Ichwan Ridwan5,Sangkaew Surat34ORCID

Affiliation:

1. Department of Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

2. Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand

3. Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand

4. Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand

5. Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta 55164, Indonesia

Abstract

Krom Luang Chumphon Khet Udomsak remedy (KKR) has traditionally been used as an alternative treatment, particularly for hyperglycemia; however, its therapeutic efficacy has not been scientifically validated. Thus, this study aims to investigate the potential inhibitory and antioxidant effects of α-glucosidase enzyme and characterize the chemical profile of KKR extracts using gas chromatography-mass spectrometry (GC-MS). The investigation highlights both KKR extracts as potent inhibitors of α-glucosidase, with the ethanolic extract of KKR (KKRE) displaying an IC50 value of 46.80 µg/mL and a noncompetitive mode of action. The combination of ethanolic and aqueous extracts of KKR (KKRE and KKRA, respectively) with acarbose exhibited a synergistic effect against the α-glucosidase. The KKRE extract displayed strong scavenging effects in the DPPH assay (IC50 156.3 µg/mL) and contained significant total phenolic (172.82 mg GAE/g extract) and flavonoid (77.41 mg QE/g extract) contents. The major component of KKRE is palmitic acid (15.67%). Molecular docking revealed that the major compounds interacted with key amino acid residues (ASP215, GLU277, HIS351, ASP352, and ARG442), which are crucial for inhibiting α-glucosidase. Notably, campesterin had a more significant influence on α-glucosidase than acarbose, with low binding energy. These findings underscore the significance of KKR in traditional medicine and suggest that it is promising treatment for diabetes mellitus. Further studies using animal model will provide valuable insights for advancing this research.

Funder

Walailak University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3