Enhancing Tire Condition Monitoring through Weightless Neural Networks Using MEMS-Based Vibration Signals

Author:

Arora Siddhant1,Naveen Venkatesh Sridharan2ORCID,Sugumaran Vaithiyanathan3ORCID,Prabhakaranpillai Sreelatha Anoop4ORCID,Mahamuni Vetri Selvi5ORCID

Affiliation:

1. School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology, Chennai Campus, Vandalur Kelambakkam Road, Chennai 600127, India

2. Division of Operation and Maintenance Engineering, Luleå University of Technology, Luleå, Sweden

3. School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai Campus, Vandalur Kelambakkam Road, Chennai 600127, India

4. Sustainable Mobility Automobile Research Technology (SMART) Center, Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India

5. Department of Project Management, Mettu University, P.O. Box: 318, Metu, Ethiopia

Abstract

Tire pressure monitoring system (TPMS) has a critical role in safeguarding vehicle safety by monitoring tire pressure levels. Keeping the accurate tire pressure is necessary for confirming comfortable driving and safety, and improving fuel consumption. Tire problems can result from various factors, such as road surface conditions, weather changes, and driving activities, emphasizing the importance of systematic tire checks. This study presents a novel method for tire condition monitoring using weightless neural networks (WNN), which mimic neural processes using random-access memory (RAM) components, supporting fast and precise training. Wilkes, Stonham, and Aleksander Recognition Device (WiSARD), a type of WNN, stands out for its capability in classification and pattern recognition, gaining from its ability to avoid repetitive training and residual formation. For vibration data acquisition from tires, cost-effective micro-electro-mechanical system (MEMS) sensors are employed, offering a more economical solution than piezoelectric sensors. This approach yields a variety of features, such as autoregressive moving average (ARMA), statistical and histogram features. The J48 decision tree algorithm plays a critical role in selecting essential features for classification, which are subsequently divided into training and testing sets, crucial for assessing the WiSARD classifier’s efficacy. Hyperparameter optimization of the WNN leads to improved classification accuracy and shorter computation times. In practical tests, the WiSARD classifier, when optimally configured, achieved an impressive 97.92% accuracy with histogram features in only 0.008 seconds, showcasing the capability of WNN to enhance tire technology and the accuracy and efficiency of tire monitoring and maintenance.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3