Affiliation:
1. Department of Radiology and Imaging Sciences, Emory University, 1701 Uppergate Drive, C5008, Atlanta, GA 30322, USA
2. Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
3. Department of Nuclear Medicine, Seoul National University Hospital, Seoul 110744, Republic of Korea
Abstract
Malignant transformation of tumor accompanies profound changes in the normal neighboring tissue, called tumor stroma. The tumor stroma provides an environment favoring local tumor growth, invasion, and metastatic spreading. Nuclear imaging (PET/SPECT) measures biochemical and physiologic functions in the human body. In oncology, PET/SPECT is particularly useful for differentiating tumors from postsurgical changes or radiation necrosis, distinguishing benign from malignant lesions, identifying the optimal site for biopsy, staging cancers, and monitoring the response to therapy. Indeed, PET/SPECT is a powerful, proven diagnostic imaging modality that displays information unobtainable through other anatomical imaging, such as CT or MRI. When combined with coregistered CT data, [18F]fluorodeoxyglucose ([18F]FDG)-PET is particularly useful. However, [18F]FDG is not a target-specific PET tracer. This paper will review the tumor microenvironment targeting oncologic imaging such as angiogenesis, invasion, hypoxia, growth, and homing, and also therapeutic radiopharmaceuticals to provide a roadmap for additional applications of tumor imaging and therapy.
Funder
National Institutes of Health
Subject
Radiology Nuclear Medicine and imaging
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献