Dynamic Path Optimization Based on Improved Ant Colony Algorithm

Author:

Cheng Juan1ORCID

Affiliation:

1. Jinling Institute of Technology, Nanjing 211169, China

Abstract

Dynamic path optimization is an important part of intelligent transportation systems (ITSs). Aiming at the shortcomings of the current dynamic path optimization method, the improved ant colony algorithm was used to optimize the dynamic path. Through the actual investigation and analysis, the influencing factors of the multiobjective planning model were determined. The ant colony algorithm was improved by using the analytic hierarchy process (AHP) to transform path length, travel time, and traffic flow into the comprehensive weight-influencing factor. Meanwhile, directional guidance and dynamic optimization were introduced to the improved ant colony algorithm. In the simulated road network, the length of the optimal path obtained by the improved ant colony algorithm in the simulation road network is 3.015, which is longer than the length of the optimal path obtained by the basic ant colony algorithm (2.902). The travel time of the optimal path obtained by the improved ant colony algorithm (376 s) is significantly shorter than that of the basic ant colony algorithm (416.3 s). The number of iterations of the improved ant colony algorithm (45) is less than that of the basic ant colony algorithm (58). In the instance network, the number of iterations of the improved ant colony algorithm (18) is less than that of the basic ant colony algorithm (26). The travel time of the optimal path obtained by the improved ant colony algorithm (377.1 s) is significantly shorter than that of the basic ant colony algorithm (426 s) and the spatial shortest distance algorithm (424 s). Compared with the basic ant colony algorithm and the spatial shortest distance algorithm, the results of the optimal path obtained by the improved ant colony algorithm were more accurate, and the effectiveness of the improved ant colony algorithm was verified.

Funder

Jiangsu University Philosophy and Social Science Research Project

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference20 articles.

1. Combining hierarchical and goal-directedspeed-up techniques for dijkstra’s algorithm;R. Bauer;Journal of Experimental Algorithmics,2010

2. Research on the optimal route choice based on improved Dijkstra;M. Wei

3. A new bidirectional search algorithm with shortened postprocessing

4. Design of a route guidance system with shortest driving time based on genetic algorithm;U. Atila

5. An Ant Colony Optimisation algorithm for solving the asymmetric traffic assignment problem

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3