A Deterministic Sensor Deployment Method for Target Coverage

Author:

Jiang Ye1,Xiao Shuyan2,Liu Jian1,Chen Bo1,Zhang Bangbang1,Zhao Hongzhi1,Jiang Zhaoneng1ORCID

Affiliation:

1. Hefei University of Technology, Hefei 230009, China

2. Jiangsu University of Technology, Changzhou 213125, China

Abstract

In order to monitor the gas leakage, the gas sensors are deployed conventionally in chemical industry park, with little considerations given to the gas characteristics and weather conditions, which give rise to the problems of coverage hole and coverage repetition. To solve the problems, this paper proposes a deterministic sensor deployment method with the gas diffusion models which takes into account wind speed and direction and then studies the influence of wind speed and direction on the monitoring error of gas sensors. Then, we research the deterministic deployment method of gas sensors in condition of the main wind speed and direction somewhere. Firstly, we use the CFD theory to simulate the gas diffusion situation so as to obtain the concentration value of the relevant points. Secondly, we put forward a new optimization criterion, namely, the more alarm concentration points covered by gas sensors, the coverage performance is better, and the deployment method is better. Accordingly, a new objection function is built. Thirdly, we obtain the weight values of the function using entropy estimation method. Finally, we deploy the gas sensors determinately using particle swarm optimization (PSO) algorithm. The simulation results show that the proposed method can improve the monitoring efficiency and the coverage performance of gas sensor network.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3