Accelerated Failure Time Model to Explore the Perception Response Times of Drivers in Simulated Car-Following Scenarios

Author:

Guo Yingshi1,Zhang Zhi1ORCID,Yuan Wei1,Wang Chang1,Wu Fuwei1,Liu Zhuofan2

Affiliation:

1. School of Automobile, Chang’an University, Xi’an 710064, China

2. Xi’an University of Posts and Telecommunications, Xi’an 710061, China

Abstract

In the development of effective rear-end collision alarm systems, understanding the factors that influence the perception response times (PRT) of drivers is important for the design of a reasonable lead time for the warning (or intervention) of likely collisions. Previous studies have proposed different approaches for examining the impact of situational or individual factors on the PRT of drivers. However, unobserved heterogeneity has not been considered and neither has a duration-modeling approach been used, resulting in a lack of accurate estimation. The purpose of the present study was to explore the effect of the driving situation and individual differences on the PRT of drivers while also considering unobserved heterogeneity. A total of 101 participants were exposed to different levels of secondarily cognitive load and situational urgency in simulated d scenarios. Several accelerated failure time (AFT) duration models, both with and without heterogeneity, were developed to model the PRT of drivers, while factors related to driving situation and individual differences were incorporated. The results indicate that influential factors include age, working memory capacity (WMC), cognitive load, and initial time headway exerted significant effects on the PRT of drivers. The hazard rate changed by 14.4%, 22.6%, and 7.5% when age, cognitive load, and initial time headway changed by one unit, respectively. Furthermore, the hazard rate decreases by more than 20% for individuals with higher WMC compared with baseline individuals. These results suggest that the AFT model that considers unobserved heterogeneity can provide a more accurate estimation of the PRT compared to other duration models. These findings can be expected to provide a further understanding of drivers’ braking behaviors, which will contribute to the development of advanced driving assistant systems as well as safety assessments of in-vehicle information and communication technologies.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3