Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation

Author:

Parthasarathi Theivasigamani1ORCID,Nirmal kumar A. R.2ORCID,Vanitha Koothan3ORCID

Affiliation:

1. Crop Physiology and Genomics Lab, VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, Tamil Nadu, India

2. Regional Agricultural Research Station (RARS), Tirupati, India

3. Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

Abstract

Rice is a staple food predominantly consumed by more than half of the global population. Water deficit is a crucial threat to produce rice globally. Prevailing water-saving techniques for rice can reduce water inputs but are not widely adopted due to the high yield penalty. Partial root-zone irrigation (PRI) is an innovative water-saving technique that allows simultaneous wet and dry areas within the root zone. We hypothesized that optimized PRI improves the water use and reduces the yield penalty of rice. A split root experiment was conducted on rice grown in pots with six defined PRI treatments, that is, PRI1, PRI2, PRI3, PRI4, PRI5, and PRI6. Half of the root system was wetted and alternated between halves with one- (PRI1), two- (PRI2), three- (PRI3), four- (PRI4), five- (PRI5), and six- (PRI6) day intervals. Conventionally irrigated rice plants where the whole root zone of rice was wetted and grown in the nonsplit pot were maintained and considered as control. Control and PRI treatments were irrigated based on 100% potential evapotranspiration demand (ETc). In particular, one PRI treatment (PRI3) showed a remarkable increase in active roots and leaf photosynthesis (PN) by wet and dry cycles within the root zone. Distinctive shoot responses of rice under PRI indicated enriched physiological responses for superior water productivity. The third-day-interval partial root-zone irrigation (PRI3) and conventional irrigation had similar leaf water potential (Ψleaf), while PRI3 had higher grain yield than conventional treatment and higher root surface area that may have compensated for the moderate level of stress in PRI. The finding that PRI scheduled at three-day intervals (PRI3) was superior to conventional irrigation for a single rice plant is promising and needs to be tested and adapted to field conditions.

Funder

Vellore Institute of Technology

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3