An Intelligent Prediction Method of the Karst Curtain Grouting Volume Based on Support Vector Machine

Author:

Niu Jiandong1ORCID,Wang Bin1,Wang Haifa1,Deng Zhiwei2,Liu Jianxin3,Li Zewei1,Chen Guanjun4,Zhang Botao5

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. School of Computer Science and Engineering, Central South University, Changsha 410000, China

3. Swan College, Central South University of Forestry and Technology, Changsha 410000, China

4. Hunan Hongyu Engineering Group Co., Ltd., Changsha 410000, China

5. Changsha Hengde Geotechnical Engineering Technology Co., Ltd., Changsha 410000, China

Abstract

The prediction of the grouting volume is a very important task in the grouting quality control. Because of the concealment and complexity of the karst curtain grouting engineering, there is little research on the prediction of the karst curtain grouting volume (KCGV), and the prediction is hindered by the practical problems of small samples, high dimensions, and nonlinearity. In the study, based on the basic idea of support vector machine (SVM), a multiparameter comprehensive intelligent prediction method of the KCGV is proposed, which overcomes the limitation of few sample data in practical engineering. This method takes the grouting construction conditions and the slurry conditions which control the slurry diffusion as the input parameters, which are the basic data which can be easily obtained in the field grouting process. This feature greatly improves the prediction accuracy and generalization performance of the method. The intelligent prediction method of the KCGV based on SVM is applied to a typical karst curtain grouting project. The mean absolute error of the prediction results is 3.47 L/m, and the mean absolute percentage error of the prediction results is 5.97%. The results show that the proposed prediction method has an excellent prediction effect on the KCGV and can provide practical and beneficial help for the field karst curtain grouting project.

Funder

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3