Design of Two-Wheeled Motorcycle Tire Crown Contour Bioinspired by Cat Paw Pads

Author:

Liu Congzhen12,Wang Guolin1ORCID,Zhou Haichao1,Mei Ye1ORCID,Li Yongqiang2,Li Yalong2,Zhang Lingxin1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

2. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China

Abstract

The grip force of tires is crucial for vehicle security and drivability under different driving conditions. A small contact area and stress concentration in the contact patch of two-wheeled motorcycle (TWM) tires result in a reduction in grip performance and wear resistance. Even worse, improving the grip and wear resistance together is difficult to achieve. The purpose of the current study is to analyze the dynamic grounding characteristics and geometry of a cat paw pad and then apply its structure to the TWM tire to improve the contact area and wear resistance under different operating conditions. A nonlinear finite element tire model that could accurately reconstruct the tire structure and realistically reflect the mechanical response to different loads was employed. Then, the accuracy of the tire model was validated by a static test with a control tire. For cats, the dynamic grounding characteristics and topology of paw pads were determined using a pressure-sensitive walkway and a three-dimensional (3D) laser scanner. The results indicated that the cat forepaw third pad (CFTP) exhibited excellent grip capacity. According to similarity transformation, a bionic tire crown was designed according to the lateral fitting curve of the CFTP. Comparative results showed the enlargement of the contact area and decreases in peak pressure and frictional energy rate for the bionic tire under different conditions. With these improvements, the grip performance was improved, and the service life was extended synchronously. These research results can be applied for the design of TWM tires, especially cross-country motorcycle tires.

Funder

Jiangsu University

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3